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Van Hove's partial density matrix, pc(t), in his generalized master equation is 
interpreted as a Wigner representation of "two-time dyad" for "energy E" and 
"time t". This interpretation enables us to integrate the "energy" E in Van 
Hove's master equation. The resultant equation is of non-Markov type on two 
time parameters. Starting with this master equation, the derivation of quantum 
kinetic equations, including the second-order approximation in the density 
expansion, is discussed. The scaling of the quantum kinetic equation is exam- 
ined in detail for a system in which particles interact through the delta shell 
potential. It is shown that the quantum kinetic equation, including three-particle 
scattering, may exist for the physical situations of low-energy scattering, high- 
energy scattering, and for resonance scattering for time scales of the system 
sufficiently separated. In deriving the quantum kinetic equation, a faetorization 
theorem for m-particle distribution functions is proved to arbitrary order in 
perturbation expansion. 

KEY WORDS: Van Hove's two-time method; Wigner function on energy 
and time; two-time dyad; Liouvillian; energy superoperator; quantum ki- 
netic equation; factorization theorem; second-order approximation in den- 
sity expansion; three-particle scattering; 8 shell potential; resonance scat- 
tering. 

1. INTRODUCTION 

The use of generalized master  equat ions  has been  central  in the s tudy of 
irreversible processes in nonequ i l i b r i um q u a n t u m  statistical mechanics .  (1-5) 

One  formula t ion  is the two-resolvent  me thod  of V a n  Hove. (~'2) In  his 
p ioneer ing  work, he studied the t ime evolut ion of the d iagonal  e lements  of 
the densi ty matr ix  to derive the Pauli  master  equa t ion  from the microscopic  
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dynamical laws and extended it to a generalized master equation valid to 
arbitrary order in the perturbation. The generalized master equation does 
not, however, apply directly to the density matrix, o(t), but to an auxiliary 
quantity, oe(t), called the partial density matrix, from which o(t) can be 
obtained by energy integration. (2) This master equation has provided a 
viewpoint for understanding the occurrence of irreversibility in the system 
with infinite degrees of freedom and for justifying the phenomenological 
kinetic equations for macroscopic observables from the microscopic laws. 

The purpose of this paper is to show first that oE(t) is a Wigner 
function (6) of "time" t and "energy" E, and to describe in full detail a 
derivation of the quantum kinetic equations for a moderately dense gaseous 
system under this interpretation. 

To obtain the Wigner interpretation, in Section 2 we will show that the 
time t in pE(t) may be considered the mean time t = (t 1 + t2)/2 when we 
express the density matrix by the dyad of the ket vector I~(tl) ) and the bra 
vector @(t2) [. The parameter is defined as an associated variable to the 
relative time s = t x - t 2, in a Fourier transform of an auxiliary two-time 
dyad o~(t)--([~(t + �89 �89 v, where the subscript av  expresses 
an ensemble average of the system. We will see that the introduction of the 
two-time dyad enables us to establish the integration on E in Van Hove's 
generalized master equation. The resultant equation for ps(t) is a non- 
Markovian equation not only on the time t but also on the time s. 

From this result the following question immediately arises: How may 
kinetic equations which include only a single parameter on time be justified 
through the master equation on ps(t) which includes two parameters on 
time? The second purpose of this paper is to answer this question. 

As will be shown in Section 2, the answer is fairly simple when we 
consider the system with the limit of the lowest density or of the weak 
coupling interaction. Our main interest in this paper is, thus, in a more 
complicated case of a moderate dense system in which the second-order 
contribution in the density expansion cannot be neglected. In Section 3, we 
discuss the condition that the master equation for p~(t) reduces to a closed 
equation in the time s. By putting s = 0 in the closed equation, we obtain 
the desired master equation for the diagonal element of the density matrix 
with a memory effect on the time t. 

In Section 4 we reduce the master equation to the quantum kinetic 
equations which govern a single-particle momentum distribution function, 
where the collision terms are represented by the 7 matrix for the two-body 
a n d / o r  the three-body scattering. In this reduction we will derive the 
factorization property of the distribution function [see Eq. (4.8)]; this 
well-known problem is encountered in the determination of the time 
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evolution of macroscopic observables through the formulation of the 
master equation. The basic idea for justifying the persistence of factoriza- 
tion was first given by Kac. (7) This has been rigorously discussed recently 
by Lanford (8) for a classical dilute system consisting of hard-sphere parti- 
cles. He has discussed the derivation of the Boltzmann equation neglecting 
three or more particle collisions. There he proved the factorization property 
persists, and the iterating solution of the BBGKY hierarchy converges in 
the Boltzmann-Grad limit by restricting the time scale to times tess than 
the mean free time. We must also mention Resibois' work on the classical 
plasma(9) ; there he has sketched a proof of the persistence of factorization 
in perturbation theory, when he rederived the Balescu-Lenard quasilinear 
equation by a direct summation procedure. If one combines this result with 
the concept of semiconnected diagrams which has been introduced by 
Prigogine and Balescu, (l~ the proof of the factorization property of the 
distribution function in kinetic equations appears to follow. This has been 
recently demonstrated in detail by Skarka (1~) to the fourth-order approxi- 
mation in perturbation theory for a classical system. We will prove this 
property for the quantum case less rigorously to arbitrary order in perturba- 
tion expansion in .Appendix C. 

In Section 5 we will discuss the physical justification (time scaling) of 
the quantum kinetic equation for a specific case where particles interact 
with the delta shell potential [see Eq. (5.1)]. We will investigate it for 
various cases: low energy, high energy, and resonance scattering. Then we 
will see that the quantum kinetic equation including the second-order 
approximation on the density expansion may exist for a wide class of 
physical situations, even for the system with resonance scattering, provided 
characteristic time scales are sufficiently separated. 

The final section will be devoted to discussing the physical role of the 
two-time dyad O,(t), which we will introduce in Section 2, focusing our 
attention on the evolution of the time s. We will see that this quantity leads 
naturally to the criterion of dissipativity of the system and provides a 
plausible definition of the relaxation time of the system. 

2. GENERAL THEORY 

In quantum statistical mechanics, the physical state of an N-particle 
system is described by the density- matrix [0(t)) governed by the von 
Neumann equation, 

i~t  ip(t)) = 1tip(t)) (h = 1) (2.1) 
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with the initial condition 

1O(0)) = I{ Iq~ (0)><q~(0)l }av) (2.2) 

Here, we express the equation in a superspace, $, with Dirac's  notation, 
IX), for the supervector (s.vector) in $, where X is a linear operator in the 
ordinary Hilbert space, %.2 The antisymmetrized super-Hamiltonian (the 
Liouvill ian),/~, is defined through the Hamil tonian H of the system in % 
by 

= t t> -I-/< ( 2 . 3 )  

where the one-sided superoperators (s.operators) A > and A < are defined 
such that A > I B ) =  lAB) and A < I B ) =  IBA), respectively, where A is a 
linear operator in %.(12) 

In  Eq. (2.2), I~) is a state vector of the system in %, and the subscript 
av expresses an ensemble average of the system. We assume that the 
Hamil tonian may  be decomposed into an unperturbed part  and a perturba- 
tion 

H = H 0 + V (2.4) 

We may  write a formal solution of Eq. (2.1) as 

[p(t)) = e-iH>te+iH<t[p(O)) = I(l~(t)>(~(t)l}av) (2.5) 

In  order to investigate the long-time behavior of this formal solution based 
on Van Hove 's  two-resolvent method, (2~ we will see that it is convenient to 
introduce an auxiliary dyad which depends on two time parameters,  t and 
s: 

los (t)) = e - a/>[t+ (1/2)% + in <It- (1/2) s] [p(O) ) 

= I(l (t + - 1,5')l)av) (2.6) 

By putting s --- 0, the two-time dyad reduces to the ordinary density 
matrix. The trace of p~(t) in % expresses the ensemble average of the 
surviving amplitude of the system between two different times, 

tro~(t) = ( ( ~ ( t )  I ff(t + S))}a v (2.7) 

and, thus, it is essentially the same for the two-time Green function. (13) We 
will further examine some asymptotic properties of os(t) in Section 6. 

z The inner product in g is defined by (X I Y) = tr[X + Y], where tr means the trace and X + is 
the adjoint operator of X in % (see Ref. 12 for more details). 
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Let us express the time evolution in Eq. (2.6) as 

%s(t) = e-iH>[t+(1/2)sle +iH<[t-(l/2)s] (2.8) 

This evolution s.operator satisfies the following equations: 

i ~t  ~s(t) = / t ~ ( t )  = ~ , ( t ) / t  (2.9a) 

i r = H%,( t )  = ~ ( t ) H  (2.9b) 

with the initial condition 

~ o ( 0 )  = 1 (2.10) 
A 

where the symmetrized super-Hamiltonian (the energy s.operator), H, is 
defined by (12.15) 

�9 0 = + / 4 < )  (2.11) 

Both super-Hamiltonians H and/-) are Hermitian in $ and commute with 
each other: 

H / t  = H / 1  (2.12) 

The evolution s.operator ~ (t) is expressed by the resolvent operator 
of the Hamiltonian R(z)  = ( H -  z)-1 as 

G~bs(t)=(2-~i)2;dz~dz'e-iZ[t+(1/2)S]e+iz'[t-(1/2)S]R>(z)R<(z ') (2.13) 

where the paths of integration F and F' are any positive contours enclosing 
sufficiently large portions of the real axes in the complex z and z' planes, 
respectively. For the case of t >�89 only the path F(F') in the upper 
(lower) half-plane contributes. By changing the variables z and z' to 
E = (z + z ' ) /2  and l = z - z', Eq. (2.13) is rewritten 

%,(t)=(+mdEe-ie*~ for t >�89 (2.14) 
. 1 - ~ o o  

where 

and the path F" is parallel to the real axis on the upper half-plane in the 
complex l plane and goes to - o0 from + m. 

We now introduce a quantity 

[pc(t)) = %e(t)[o(0)) (2.16) 
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It is related to the two-time dyad through the Fourier transform of the 
relative time s in Eq. (2.6): 

]ps( t) ) = ;_+~ dE e-iEqpE( t) ) (2.17) 

Therefore, IpE(t)) is a Wigner distribution function on "time t" and "energy 
E." If we put s = 0 in the above definitions, they reduce to the quantities 
which were introduced by Van Hove, and IpE(t)) is then just the partial 
density matrix. (2) 

In order to derive a quantum kinetic equation, we start with the 
asymptotic master equation which governs an asymptotic time evolution of 
IpE(t)). The derivation of the master equation has been discussed in Refs. 
(12) and (14). There we have shown that an analogous discussion to the 
well-known one-time formalism developed by Prigogine and coworkers (3-5) 
can be applied to Van Hove's two-time formalism, if we decompose the 
perturbation series of the product of two resolvents, R > ( E  + ~ I) 
R < ( E - � 8 9  l), into the following four fundamental components: a creation 
part, a diagonal part, a destruction part, and a propagation-of-correlation 
part, which are represented by fundamental kinetic s.operators, respec- 
tively. To avoid lengthy redefinitions of these s.operators and to go directly 
to the main theme of this article, we review the definitions and important 
results of this decomposition in Appendix A, and we write only the 
resultant asymptotic master equations [see Eq. (A.21)]: 

i--~--tPY~E(t)P= 2~rfo~176 e( t - -  t')P (2.18a) 

i ~ t P Z E ( t ) P =  2~rfo~ t')P2'e(t')P (2.18b) 

Here, Y.E(t) is the asymptotic evolution part of ~E (t), which is obtained by 
evaluating the contribution of the poles at I = + i0 in the perturbation 
series of R>(E + � 8 9  �89 in Eq. (2.15). The s.operator P is the 
projection s.operator [see Eq. (A.3)] which projects out diagonal compo- 
nents of the s.vector on the eigenstate of H 0. The kinetic operators, X~ and 
~ ,  are called the "collision s.operators." They describe the irreducible 
diagonal transition between two diagonal s.states in the perturbation expan- 
sion. This transition occurs in the off-diagonal subspace. The collision 
s.operators are defined in the Laplace transform by XE(I) = AE(I)~ E (1) -- 
~E (l) and ~(E(I) = ~2ff E (/)As(l) - ~E (I) [see also Eqs. (A.16) and (A.22)], 
where ~fie and ~e are irreducible diagonal s.operators and h e is the 
difference of the renormalized propagator [see Eqs. (A.9)-(A.17)]. The 
collision s.operators are generalizations of the collision kernel of the Pauli 
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master equation to arbitrary order in the perturbation expansion. Similar to 
the Pauli master equation, the collision s.operators consist of two parts; the 
gain part, AE~tf E or ~ffEAE, and the loss part, ~E [see Eq. (A.16)]. The 
basic assumption which we have imposed in deriving Eq. (2.18) is that the 
kinetic s.operators are regular functions on l in the neighborhood of 
l = + i0. The validity of this fundamental assumption will be discussed in 
Section 5 by using specific examples. 

We introduce an asymptotic two-time evolution s.operator, E~(t), as a 
Fourier transform of E~(t), 

E,(t) = f-?5 dE e-iEs~ E(t) (2.19) 

Then, the Fourier transform of the master equations (2.18) is expressed in 
the form of convolution integrals on t and s as 

3 o o  ! o o  t t t  t 

i ~tt " E ' ( t ) "  -- f0 dt f_~ods X,,(t ) 'Y,_~,(t-t ')P (2.20a) 

i~ ,Zs ( t )P= fo~176163 ) (2.20b) 

where 

X;'(t) = f ) S d E  e-iesx'E(t) (2.21a) 

2;'(t) = f_ +OOdE e-m'~'E(t) (2.2 lb) 

The master equations (2.20) have memory effects not only on t but 
also on s. By putting s = 0, the evolution s.operator Es(t) describes the 
asymptotic time evolution of the ordinary density matrix lo(t)). Equations 
(2.20) show clearly that there is no closed master equation for P 10(t)) itself 
as asserted by Van Hove. (2) 

In the derivation of the quantum kinetic equation, it is important to 
consider what condition allows the closure of the master equation on s. To 
find the condition, let us write the right-hand side of Eq. (2.20a) in terms of 
X'E(t) and expand in a Taylor series around the regular point E = w: 

fo~176 f ) 2 d E  ' e-ie'x'e(t')PY.e(t- t')P 
o o  

ao ,=o ~.I ~-~X'E(t') E=,o 

(2.22) 
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This shows that if PY, E(t)P contains a factor which has a sharp peak 
around E = to [8(E - to)-like], then Eqs. (2.20) may close at the time s. 

For the limits of weak coupling or low density, it is easy to see that the 
8 singularity comes from the factor (a; a[AE(+ i0)[a; a) = 2rd3(E -- E~) in 
the solution of XE(t ) [see (A.20)], where E~ is an unperturbed energy, i.e., 
Ho]a ) = c~[a>, and we can obtain a closed master equation (for example, 
the Pauli master equation(l)). Our main interest here is that of more 
complicated systems in which higher-order terms of the density expansion 
or the coupling constant cannot be neglected. In the following section, we 
will discuss a moderate dense system where the second-order term of the 
density expansion cannot be neglected. Thus, we will be concerned with 
both binary and three-body scattering in the quantum kinetic equa- 
tion. (16'17)'3 The system with moderately strong coupling can be treated in a 
similar way. The situation of really strong coupling (and high density) still 
remains beyond our understanding. 

3. THE DENSITY EXPANSION AND THE (~ S INGULARITY  

We will discuss the origin of the ~ singular factor in the second-order 
approximation of the density expansion. Because the kinetic s.operators, 
Xe, Xe, Q~eP, and P| Q in Eq. (A.20) start with the first-order term on 
the density c, and A E starts with the zeroth-order term, the solution of 
Y,e(t) is expressed from (A.20)-(A.26) in this approximation by 

Yuz(t) ~ [e + QCeP]ZE(t)[P + e| Q] (3.1) 

and 

where 

and 

eEe(t)P = e-Wr~etPY, e(O)P = exe(O)ee -ie~et (3.2) 

PFEP~ (1 + OtXE)Xe 

PFeP ~(e(1  + OtXE) 

(3.3a) 

(3.3b) 

I [h  E + 8t(XEAE) ] (3.4a) PXe(0)P 

_ 1 [A e + 8t(Ae#e) ] (3.4b) 
2~ri 

3 The product of the one-particle functions, 'hi,e, in Eqs. (3.1), (3.9), and (3.11) in Ref. 15 
should be read as the convolution integral of E. 
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where 0 l =-- O/Ol, and hereafter all functions of I are evaluated at l = + i0. 
In Eqs. (3.3), the factors OtXe and 0l)~E appear as a result of the memory 
effect of t, i.e., the non-Markovian structure of the generalized master 
equation on t [see Eqs. (2.20) and also (A.21)-(A.24)]. From Eq. (3.4h) we 
have 

1 
AE(1 + Ot~E) + ~/(O,AE))~ e (3.5) e y E ( 0 ) e  = 

We now show that the 6-singular factor comes from A E in the first term in 
Eq. (3.5), while the second term can be neglected. Let us consider the 
tetradic element of A E [see (A.9) and (A.14)]: 

1 (c~; ~IA~I~; = 1 [ D , ~ ( E  + iO) - D ~ , ( E  - i0 ) ]  
2~ri 2-~ 

= 1 u2J'~(E ) (3.6) 

~r [ , ~ -  E -  p,K~(E)] 2 + [p2J~(E)] 2 

where uIK~ and 1,2J ~ are the real and imaginary parts of the self-energy part 
G~(z) at the real axis of Z, (2) 

G,~(E +__ iO) = u,K,~(E) ++_ ip2J,~(E ) (3.7) 

and ~'1 and 1'2 are dimensionless parameters which characterize the magni- 
tude of the real part and imaginary part, respectively. 

Now we make the basic assumption that the imaginary part, p2J~, does 
not vanish, but is so small that the function (3.6) has a sufficiently sharp 
peak at the point of E = E,~, where E,  is a solution of the equation 

E~ - ,,~ + VlK~(E~) = 0 (3.8) 

As will be discussed in Section 6, the first part of this assumption, i.e., 
1,2J ~ v ~ 0, is essential to obtain the dissipative behavior of the system. 

Under this assumption we can approximate the functions E~- E -  
~qK,~(E) and p2J,~(E) in Eq. (3.6) by a Taylor series around at E = E~ to 
first order. Neglecting higher-order terms on u 2, we have 

n~ ~ n~ J'(E~) (E-  E~)'f~ 
_ _ 1   IAEI  ' _ _  + 
27ri ~r ( E _ E ~ ) 2 + T 2  ~r J~(Ea) (E_ E~)2 + y~ 

(3.9) 

with 

1 
n~ --= 1 + t, lK~(Eo 0 ' 

Y,~ =- nJ'2J~,( E~ ) > 0 (3.10) 

where n~ is a renormalization constant and prime on K s and J~ expresses a 
derivative on E. The quantity y~ gives a width of the function (3.9) around 
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E = E~. If the condition, Iv JEll  << 1, i.e., 

~ ~ )  <<1 (3.11) 

is fulfilled, and if the remaining functions in Eq. (3.2) have no singularity 
near E = E,, then we can approximate the first term in Eq. (3.9) by the 8 
function, and the second term vanishes because of (E - E~)d(E - E~) = O. 
Thus, we have 

1 ( ~ ; ~ ] A e l a ; ~ ) ~ n , 6 ( E _  E~) (3.12) 
2~ri 

In a similar approximation to Eq. (3.9), we have for the second term in 
Eq. (3.5) 

2ori 

n,~ J~(E,~) 2 ( E -  E,~)y 3 
+ 

:o(eo) [ ( e -  eo) + 2 

1 -8~,~ (3.13) 
t) 

x 

Condition (3.11) shows that the first term in the curly bracket can be 
approximated by d ( E -  E~)/2 - 3 ( E -  E~)/2, while the second term by 
n~(J~/J~)(E - E , )d (E  - E,). (18) Therefore, if we assume that the gain part 
of the collision operator, ~21fE~ As,  has the same order of magnitude as the 
loss part, p2J~(E~) [see Eqs. (A.16b) and (A.15)], then we can neglect Eq. 
(3.13) as compared to the first term in Eq. (3.5). Thus, we obtain 

PEe(O)P ~ ~ Ae(1 + O,Xe) (3.14a) 

In a similar way in Eq. (3.4a) we obtain 

e y, e (o)e  ~ 1 - f~  (1 + 0,Xe)Ae (3.14b) 

with Eq. (3.12). Combining these results with Eq. (3.2), we conclude that 
PY~e(t)P contains a 8-singular factor, if the condition (3.11) and the 
analytic properties of the kinetic s.operators which we imposed above are 
satisfied. We can thus obtain a closed master equation for the diagonal 
dement of the ordinary density matrix. 
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Substituting Eqs. (3.1)-(3.3) and Eq. (3.14) with (3.12) into Eq. (2.19), 
and taking a time derivative on t and operating it to Ip(0)), we have 

i~t(a;alpas(t))  = ~-](a;al(1 + 0,XE~)XE~Ifi; f l ) ( f l ;  fl[oas(t)) (3.15) 

where the asymptotic two-time dyad is defined by 

10fts(t)) = Y.s(t)10(0)) (3.16) 

Finally let us comment: this master equation [Eq. (3.15)] is valid for the 
asymptotic time limit t ---> oo in a moderate dense system in which we keep 
the terms in the perturbation expansion which are proportional to (ct) m and 
(c2t) ~, where m and n are positive integers. The basic assumptions in 
obtaining the closed master equation (3.15) in the relative time s are the 
sharpness condition for the function (a; atAela; a), i.e., Eq. (3.11), and the 
analyticity of the remaining functions in Eq. (3.2) at E = E~. The physical 
justification of these assumptions will be discussed for a specific example in 
Section 5. 

4. THE Q U A N T U M  KINETIC  EQUATIONS 

We now reduce our master equation (3.15) to the quantum kinetic 
equation for a single-particle momentum distribution function, which in- 
cludes an effect of three-body scattering expressed by a T matrix. (19) 

Using the relations (A.16a) and (A.18) in Eq. (3.15) and neglecting 
terms proportional to (0tAE)~ e and ~ e  (0IAE) by a similar argument as in 
Eq. (3.13), we have, for s = 0, 

i ~ t  (a;  a[o;s(t)) 

= ~ [(~;'~IA~I/~;/~)(~;/~lp~?(O) 
B 

+ ~ ~ [(,~; ~lA~(a,~)tv; "v)('v; v l z % ~ l  B, B)(B;/~lp~(t)) 
B v 

- (,~; ,~t(a,~y%iv;  v)(,~; , ~1~ .~  I B;/~)(/~; B Io3S(t)) 

+ (,~; o~l(a,~o)~ob,; ~,)(,~; o~1~o A~o[ ,8; ~)(,~; o~lp3~(t)) ] 
(4.1) 
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This equation still contains arbitrary order of the density c, because the 
dressed energy, E~, Eq. (3.8), is a function of v I oc c. In order to obtain an 
equation through the second order of c, we expand all functions of the 
dressed energy around the unperturbed energy and drop higher-order terms 
of the density than c 2. Then, we obtain 

~ (~; <oa'(,))= 2~E 8(,o - ,~)(~; <%~'j e; B) 

x [(fl; f l l o g ( t ) )  - (a; alo~'(t))] 

+ 2~X~(%-  ~B)(~; <eg~l'8; '8) 
P 

x [(p; Blog(O) - (-; ~lpg(O)] 

- 2~r~-~, {8'((~ - Ep)(a;al~-~2)lfl; ,8) 
P 

x [ < ~ ) ( , o )  - K # ~ ( , e ) ]  

+ a( ~o - ~)( . ;  ~1% ~ 'I '8; '8 )*Q=~( *o ) 

+ e(,o - ~)( . ;  <%~)J '8; B )/~)'(~o) } 

x [( '8;  , 8 1 o 8 ' ( 0 )  - (~; ~10g(0)]  

+ ( 2 ~ ) = ~  y,  a(( .  - %)a(~, - ~e)("; "1~ ~) 
p r 

x {(r; ri%~,i,8; e)[('8; '8 ipa~(,)) - (~; rlpa~(,))] 

- (o~; o d ~ )  1 '8; ,8 ) [ (  ,8; ,8 log(O) - ( <  ~lpg(t))] } 

(4.2) 

where the superscript (n) indicates that the quantity is a function of n 
particles. 

The tetradic element of qff~2) and ~21f~ 2) can be rewritten by using the 
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two-body and three-body T matrices defined by < 16) 

1 tij(z) = V,j + Vij , ,o  to(z)' i, j = 1, 2, 3 
Z nu 

and 

723 

(4.3) 

q~<N)(p, . . . . .  PN ;t) = (a; al00(t)) 

d?(m)(pl,..., pm;t ) = ~-~-N+m E " ' "  E ~ ( N ) ( p l  . . . . .  PN ; t )  (4.7) 
Pen+ 1 PN 

where  I~)  = [P, . . . . .  PN).  
To obtain the kinetic equation for a single-particle distribution func- 

tion from the master equation, we need to prove the factorization property 
of the distribution function of the finite m particles, 

m 
~b(m)(pl . . . . .  Pm , t )  = /-I ~(1)(pr; t) (4.8) 

r = l  

The essential assumptions in the derivation are (a) the thermodynamic 
limit, 

N--> co, ~--> oo, N / ~  = (2'n')3c = const (4.9) 

and (b) the initial condition that the spatial correlation among particles 
vanishes when a distance between particles increases. The proof of the 
factorization property (4.8) is given in Appendix C. 

In Eq. (4.2), summmg over all momenta except P lo t  the fixed particle, 
and expressing ~ n) by the T matrices, and using the factorization property 

(4.6) 

and 

T ( z ) = ~ [  V i j + V i j i < j  z - 1HO23 T(z)] (4.4) 

where H ~ and H~ are the two-body and three-body unperturbed Hamil- 
tonians, respectively, and 

_ 1 J fdrV(r)ei(p,-p~)r~p,+pj,p~+p~ (Pi, P]I VijlP~, P~ (27r)3~ 

= ~ v ( l p i -  P/l) pi+pj,p~+p~ (4.5) 

and (2qr)3~ is the volume of the system. 
The N-particle momentum distribution function q~<~v) and its reduced 

function q~<m) are related to the density matrix by 
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(4.8), we obtain the quan tum kinetic equation, 

~te~(1) -- (2~r)3cE E 2~rS(q + % -  e l, - cz ) l t~ ,vz (q  + r 
p2 pip~ 

• [ , (1 ' )~(2 ' )  - , ( 1 ) , ( 2 ) ]  

3 2 

x { rG,l,2,3,(q + ,2 + ~3) r ,~ . , , , . (q  + ~2 + ~))t.,~ 

X [q,(l')4,(2')q,(Y) - q,(1)4,(2)q,(3) ] 

X X 
2 P2P3 P(123) PlPl 

X { ~(E--e{--e'2) lE=c,+e=lt~2,1,2,(r ~ + e=)l 2 

X [ K,3(q + ~3) - K,'3(e,' + ~3)] 

Dlgl~'l'2'(E)I2 [ K13(s tE3) + 2vrS(q + e= - e] - e~) 0E e=q+,2 

DK13(E ) 
+ 2rr3(q + r - e~ - e~)l t~2,v2,(q + r DE 

X [q~(l')q,(2')q~(3) - , ~ ( 1 ) , ( 2 ) , ( 3 )  ] 
+__l 3 2 

[(2~r) c] X ~,, X X 2~r28(q + E3-{I - t [ ; )  
2 " P2P3 P(123) P]Pl P~PI' 

x ~ ( ~  + ~2 - e~' - e; ' )  

[ Dt~'3'I'y(E) ] 
x D e  t6 , , ,~ , (E)  - t? , , , , , , (~)  Dt i i , , , , , (~)  

3E E=q+*3 

X { t  + - ,  ,'zv'2"l,q + e2)12['#(l")r e~(l')q,(2)r 

- I t i~2,v2, , (q  + .2)12[,~(1,,)~,(2")~,(3') - ep(1)q~(2)r ] } 
(4.10) 

where the subscript t.ti stands for "two-side topologically" irreducible" [see 
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Appendix A] and we use abbreviated notation e i - % i ,  q~(J')- q,(1)(p~; t), 
and 

@y(E) ~ (Pi, pjlt9( E - i0)IP~ ,Pj) 
(4.11) 

T1~3,,,a,3,( E ) ~ (P,,  P2, P31T(E • i 0 ) l p '  ~ , p~, p;) 

and K~j(E) is a real part of the forward scattering amplitude which arises 
from the self-energy part, G~ (E _ i0), 

Kq(E) -- - R e [  tif, o.(E)] (4.12) 

The summation, ~-~P(123), in Eq. (4.10) is taken over all permutation of 
particles in its argument. The factor 1/2 in the second and third terms 
arises from the fact that dummy particles 2 and 3 are counted twice. This 
result agrees with the equation derived by P. Resibois (17) and later by 
F. Mayne (2~ by using the one-resolvent method. 

The first term (the Boltzmann term) in the right-hand side in Eq. (4.10) 
comes from the two-body scattering. The second term comes from the 
purely three-body scattering. The third term arises from the effects of 
background particles surrounding the scattering, and it is a typical effect of 
many-particle systems. It consists of two contributions: the first two terms 
in the curly bracket come from a dressing effect of the energy, while the last 
term comes from the effect of the state renormalization. The last term in 
Eq. (4.10) is due to the memory effect on the time t. 

In the following section we turn to a specific example to illustrate the 
physical time scaling for justifying the derivation of Eq. (4.10). 

5. VALIDITY OF THE QUANTUM KINETIC E Q U A T I O N - - T I M E  
SCALING 

We will discuss the validity of Eq. (4.10) for a system of particles 
which interact with each other through the 8 shell potential of radius and 
strength X, 

V(r) = - ~---i~(r- a) (5.1) 
m 

where m is the mass of a particle and ha is a dimensionless parameter. (2o 
This potential has the following simple properties: (i) we can obtain the 
off-shell two-body T matrix exactly, (ii) it exhibits resonance scattering, and 
(iii) in the limit of ha--> or, the T matrix reduces to the T matrix for the 
hard-sphere potential of radius a. 

Let us write down the T matrix explicitly. In order to take into account 
the conservation of momenta in a scattering, we introduce a relative 
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two-body coordinate: 

p = 0'1 - p ~ ) / 2 ,  

' 2 P ' =  (Pl - P 2 ) /  , 

Putting 

P = P l  +P2 
(5.2) 

P' = P] + Pl 

t12,vz(z ) = tpr (5.3) 

we get from Eq. (4.3) 

tlpp,l(w ) = a - l v ( l  p - p'l) + a - ~ Y ,  v(lp - P"I) 1 ,,, ~0 - (p"2/2/0 tp,,p(~0) (5.4) 

where a new parameter, o~ = - z -  ( P Z / 2 M ) ,  is introduced, and # = m / 2  
and M = 2m are reduced and total mass of two particles, respectively. For 
the 3 shell potential, this integral equation is soluble by using the partial 
wave analysis. The method is a trivial extension of the calculation of 
Brueckner and Sawada(22); we will therefore only quote the result: 

% , , ( ~ k )  = 

2~r~,a 2 J t (pa) j l (P  ' a) 
t I 1 - i~2k j t ( ka )h}  ~) (ka)  

2r 2 J t (pa) j t (P  ' a) 
l ~ 1 + i)~a2kjl(ka)h}2)(ka) ' 

for I m W k > 0  (5.5a) 

for Imo~ k < 0  (5.5b) 

where 

1 ~ (2l + 1)tee, ,(~k)P,(cos~'  ) (5.6) tpP'(O~k)- (2~)3~ t=0 

and jl ,  h} 1), and h} 2) are the spherical Bessel functions, and PI is the 
Legendre function, and 

- k2 (5 .7)  
O~k 2/Z 

From the definition of the self-energy part G,~(z) in (A.10), Im[Ntpp 
(E + i0)] corresponds to ___u2J ~ in Eq. (3.7), and the condition (3.11) is 
expressed in the second-order approximation on c by 

npIm [ Utpp(~op + iO) ] 

p2/21~ + p 2 / 2 M  + Re[ Ntpp(Wp + iO) ] 

where 

<< 1 (5 .8 )  

n? = 1 + - ~ R e [ N t p p ( E )  E=%+io (5.9) 
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Now we evaluate the left-hand side of Eq. (5.8) for each case of 
low-energy scattering, resonance scattering, and the high-energy scattering 
for the 8 shell potential and the hard-sphere potential. 

5 . 1  �9 Low-Energy Scattering 

Because the s wave scattering is dominant for low-energy scattering, 
pa << 1, we obtain from Eq. (5.5a) 

2~rhaZc (1 - ha) + i)~a . pa 
Ntpp(~op + iO) ~ (5.10) 

/~ (1 - ha) 2 

and 

-2~ri a3c (ha)2 (5.11) olzNtpp(E)]E=%+io pa ( 1 - h a )  2 

Thus we may estimate the left-hand side of Eq. (5.8) for the low-energy 
case, pa << 1 and Pa << 1, by 

nplm[ Utpp(o~p + iO) ] { ha 
(p2/2/z) + (P2/ZM)  + Re[Nt,p(o~p + i0)] I ~ ~ pa (5.12) 

Therefore, the condition (3.11) is satisfied except for the case ~a ~ 1. 
To verify the validity of the kinetic equation, we now show the 

regularity of the kinetic s.operators at l = + i0. The imaginary part of Eq. 
(5.10) which corresponds to - y ~  in Eq. (3.9) also corresponds to the loss 
part of the collision s.operator [see (A.16)] at l = + i0. Thus this part is 
regular except for ha ~, 1. The regularity of the remaining parts of the 
kinetic s.operators other than Ae(l ) can be shown in a similar discussion. 
The argument for Ae(l ) is more delicate; in order to ensure the regularity, 
7~ should be a finite value, even though 7~ is very small to ensure that 
Ae(+  i0) has a sharp peak at E = E~. 

We further notice that the magnitude of the real part of the derivative 
of the T matrix, Re[~Ntpp/3E], in Eq. (5.11) gives the magnitude of the 
memory effect on time t, i.e., 3zX E. Indeed, from the definition of the 
argument E and l, the real part, Re[~Ntpp/3E], just corresponds to the 
derivative of the loss part of the collision s.operator on / ,  ~fie  (l), and that 
the structure of the gain part is the same with the loss part [see (A.15), 
(A.16), and (A.18)]. Therefore, we see from Eq. (5.11) that we can neglect 
the last term in Eq. (4.10) for low-energy scattering. (The detailed calcula- 
tion of Re[ONtpp/~E] shows that it is a higher-order term than pa.) By 
taking the limit ha ~ ~ in Eqs. (5.10)-(5.12), we see that similar statements 
hold for the case of the hard-sphere potential. 
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5.2. Resonance Scattering 

We next consider the scattering having the energy near the s wave 
resonance under the assumption of strong coupling interaction, 

)ta >> 1 (5.13) 

The resonance energies are in general given by the zeros of the 
denominator of Eq. (5.5) near the real axis of ka. Equation (5.5) shows that 
because of the condition (5.13) these zeros must lie near the solution of 

j t (ka) = 0. Therefore, from the well-known property of zeros of the Bessel 
function, we see that near the s wave resonance energy there is no 
resonance contribution o f  the other partial waves, l v a 0, except for the case 
of ka ~ 0 which was already discussed in the previous paragraph. Thus, we 
can neglect the contributions of the other partial waves and obtain the 
explicit form of the T matrix near the s wave resonance (21) : 

Ntpp(~op + iO) ~ 2erac ~1. - (pa - ~. ) + i~ln (5.14) 
t* pa (pa - ~)2  + ,7.2 

and 

2~a3Crln ~n[ (pa - ~ )2 + ~lz] - 2pml 2 + i~.[ ~ff - (pa)2 + ~12 ] 

(Pa) 3 [(pa - ~ )2 + ~ ] 2  

(5.15) 
where the resonance occurs at pa = ~n: 

~n = mr(1 + ~a  ), n =  _1,__+2 . . . .  (5.16) 

and the width of the resonance ~/~ is given by 

mr ~2<< 1 (5.17) ~n = ( Xa ! 

At the resonance pa = ~,, we have 

nelm[ Ntpp(~o e + i0)] 

(p2/2/ , )  + ( p 2 / 2 M )  + Re[ Ntpp(Oa e + i0)] 

<<. nplm [Ntr, p(~O e + /0)] ( 2~a3c ) 2~ra3c ~n (5.18) 
(p2/2/ , )  ~ 2  1 + ~ ~naq, "~-7 

The imaginary part of Eq. (5.14) shows that for small but finite 7/n the width 
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of Ae (+  i0), ~/~, in Eq. (3.9), is finite (positive), and thus AE(/) is regular at 
l =  +i0.  

The right-hand side of the inequality (5.18) can be evaluated as 
follows: In order to verify the 8 function approximation of AE(+ i0), Eqs. 
(5.14) and (5.15) should be slowly varying functions as compared with 
AE(+ i0). This implies that the energy width of the resonance Yn----(~n~/,) 
/(a21~) which corresponds to the momentum width ~/, should be much 
larger than the width y~ in Eq. (3.9), i.e., 7~/3'~ << 1, or equivalently, 

(2~ra3c)2 ~ra3c 1 + ~ ~ << 1 (5.19) 

Combining this inequality with Eq. (5.18), we see that the condition (5.8) 
holds. We notice that the inequality (5.19) also ensures the regularity of the 
kinetic s.operators at l = + i0. We further notice that Eq. (5.19) gives an 
upper limit of ha; combining it with the inequality (5.13), we have 

2 

1 << ha << (2~ra3c)~/2 (5.20) 

The left inequality is needed to ensure the resonance scattering, the right 
inequality to verify the quantum kinetic equation (4.10). 

As is well known, the inverse of the energy width of the resonance, 
"rd~(2yn) -1, is the time delay of the resonance scattering. O9'21) On the 
other hand, we will show in the last section that the inverse of ~ ,  i.e., 
% ------ (2y~)- 1, is just the relaxation time of the dissipative system. Therefore, 
the inequalities (5.18) and (5.19) show that if the scale of the time delay and 
the relaxation time is sufficiently separated such that 

% >> rd (5.21) 

then the quantum kinetic equation (4.10) is valid, even though the reso- 
nance scattering occurs. Furthermore, we can see from Eq. (5.15) that the 
memory effect on time t, i.e., the real part of Eq. (5.15) at pa = (, ,  is the 
same order of the ratio "rd/.r ~. Thus, the last term in Eq. (4.10) is negligibly 
small. 

It may be interesting to compare the relaxation time % with the mean 
free time ~'m" Because ha >> 1, %, may be approximated by hard sphere's 
one, i.e., 

l_. in X/-}- (1 + 2~ra3c "rm~-~(4/~qra2c)/(-'--~)=--~n - ~n~n )~rr (5.22) 

It shows that the relaxation time is several times larger than the mean free 
time. 
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5.3. High-Energy Scattering 

The final example is the high-energy scattering, pa >> 1, for the hard- 
sphere potential. The T matrix for this system is given by dropping unity in 
the denominator of Eq. (5.5). (21) In the high-energy limit, i.e., the classical 
limit, the impact parameter, l/p, has an upper limit, lmax/p ~ a. By using 
asymptotic forms of the spherical Bessel functions, we obtain 

pa 
Ntl~(Oa p + iO)~ - i  ~rac ~ (21+ 1)(e  -i[2pa-(l+l)~r] -4- 1) 

txpa t=0 

~., rrac {sin(rr - 2)pa - i[ pa + 2 + cos(~r - 2)Pal } (5.23) 
/* 

and 

Thus, we have 

2~ra3c(/oa)2 { - (pa) 2 - pa + 21 sin(~r - 2)pa 

- i [pa  + 2 + c ~  

npIm[ Ntpp(oap + i0)] 

(e2/2~) + (e2/2M) + Re[Ut~p(~p + i0)] 

I Nrlm[Ntpp(oa e + i0)] ,~(1 + 2~ra3c) 
< (p2/2/~) 

(5.24) 

In a similar discussion as above, we can see that all assumptions 
imposed in Section 3 are satisfied in this system. 

An interesting difference from the previous examples is that the 
memory effect on time t cannot be neglected for this system. Indeed, Eq. 
(5.24) shows that its real part is proportional to 2rra3c without other small 
factors. Thus, in the second approximation of the density expansion, we 
cannot neglect it. 

In this case we can also calculate the ratio between the relaxation time 
% and the mean free time ~',~ explicitly: 

"r,, ~ 1 (5.26) 
r, 2~-  

The above three examples show that the quantum kinetic equation 
which describes the effect of two- and three-body scattering may exist for a 
fairly wide region of the energy if the time scales are sufficiently separated. 

Finally, we mention the convergence of the series expansion of PFcP 
and P~'EP in Eq. (3.3) obtained by the iterating procedure of (A.23). In 

2~ra3c << 1 (5.25) pa 
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order to establish the quantum kinetic equation (4.10), we should, of 
course, prove its convergence. Because of its complex structure, however, it 
is still an open problem. We can only say here that all the examples given 
in this section suggest the convergence, since they show that the memory 
effect, ~lX~, which is the second approximation of the series of PF~P, is 
always very small compared with unity. 

6. EPILOGUE: T IME EVOLUTION OF os(t) ON s 

In closing we would like to mention the physical role of the two-time 
dyad, ps(t), as a function of s. Equation (2.9) shows that its evolution on s is 

^ 

governed by the energy sup eroperator, H, while the evolution on t is 
governed by the Liouvillian H. Further, Eq. (2.7) shows that the evolution 
on s relates to the surviving amplitude. This fact suggests that the dissipa- 
tivity of the system may be understood by investigating the evolution of 
ps(t) on s for a fixed t. This inference is indeed justified if we calculate the 
contribution through the width % in Ae(+iO ) more precisely, which we 
have neglected in the 8-function approximation Eq. (3.12). Combining Eqs. 
(3.1) and (3.2) with the first terms of Eq. (3.5) and Eq. (3.9) including a 
finite width 3'~, we have the dominant term of the solution for (a; a[p.~s(t)) 

(a;~lO~(t))~ff~ f-OOdEe_ies 7~ 
~+~ ( e  - e ~ )  2 + ~ 

X (a ;a l (1  + a,~@~)e-i'r~oet(P + P| Q)IP(O)) 

= nc~e-iE~s-v"lsl(a;ot]( 1 + Ot:~E~)e-ier~'( e + P| a )[p(0)) 

(6.1) 

For s = 0 we obtain the same solution which we utilized to obtain the 
quantum kinetic equation. 

Similarly, from the second term of Eq. (3.9) and from Eq. (3.13), we 
can calculate the additional term to Eq. (6.1) for the following two cases: 
(i) for s = 0, the additional term, 6(a; alO~(t)) is zero, and (ii) for s v ~ 0, 

,. j - ( /r~)  

- L ( e o )  

[ J ' ( / o ) ] [  ('~;'~1~. A.I B; B) _ ~o,~]) --y~sJ n ~ 7 , ~ - - -  + 
[ Jo(Eo) - ! 2~ ,o(eo)  

x (fl ;  flle-~er~'~"(P + P@E~ Q)Ip(0)) (6.2) 
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where upper (lower) signs are taken together for s > 0 (s < 0). For suffi- 
ciently small 3'~ and sufficiently short time on s such that y~[s I << 1, we can 
neglect the additional term, as expected in Section 3. On the other hand, 
when Isl increases and  olsl is the order of unity, the additional term cannot 
be neglected as compared with Eq. (6.1). 4 However, whole contributions in 
Eqs. (6.1) and (6.2) tend to zero due to the damping factor. Therefore, we 
may conclude 

(@(t)[qJ(t + s))}av= ~(a;alp~(t) )1~i~ >0 (6.3) 

for sufficiently large t. This is the statement about the dissipativity of the 
system which we expected. 

It should be noted that dissipativity is ensured by J~(E,) v ~ O, i.e., the 
finite width of Ae(+ i0  ), and this is just the same condition as Van 
Hove's. (2) From this result we see that it is natural to define the relaxation 
time as % = (2y,)-i ,  because the surviving probability is the square of the 
absolute value of its amplitude. 

Finally, we would like to mention to the reduced single particle 
function of tr0~(t); it is essentially the two-time Green function. (~3~ Our 
formalism shows that its evolution on the relative time is governed by the 
energy s.operator H, rather than by the Liouvillian/t  [see Eqs. (2.9) and 
(2.11)1. It may be interesting, therefore, to reformulate the theory of the 
two-time correlation function from this point of view. This will be done 
elsewhere. 
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APPENDIX A: SOME DEFINITIONS AND RESULTS 5 

Perturbed and unperturbed resolvent operators in the ordinary Hilbert 
space % are defined by R(z ) - - - (H  o + V - z )  - I  and Ro(z ) = (H  o - z )  - t ,  
respectively. They are related through the resolvent equation 

R(:) = R0(z)- go(:)vg(:)  (A1) 

4 We  notice that  the master  equation (3.15) still varied even though the additional term cannot  
be neglected. 

5 The details of calculations in this appendix are given in Refs. 12 and  14. 
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and its iterated solution is given by 

oO 

R(z) = Ro( ) E [ -  VRo(Z)l k (m) 
k=0 

In the superspace $, the projection s.operators P, which projects out the 
vacuum component of the correlation, and Q, which projects out the 
correlation component, are introduced such that 

P = E [a; a)(a;  a[, Q = 1 - P (A3) 

where Greek letters are used to express the labels of the eigenstate of the 
unperturbed Hamiltonian, Ho[a ) = %[a), and the s.vector [a; fl) is defined 
through a dyad operator in % by la; fl)----lla)(fll). They satisfy the 
relations 

p2 = p+ = p, Q~ = Q+ = Q, PQ = QP = 0 (A4) 

Introducing the kinetic s.operators which are defined in Eqs. (A6)- 
(A12), the product of two resolvent s.operators, R > R  <, in $ is decom- 
posed in the following form: 

R >(E + �89 - �89 = [ P  + QCE(I)P]R > ( E +  �89 - �89 

• [P + P|  + Q~E(/) Q (A5) 

Here, the creation-of-correlation (creation) s.operator is defined through 
the definitions (A9)-(A12) by 

Qee( t )P  = Q [ D > ( z ) N > ( z )  + D < ( z ' ) N < ( z  ') 

+ O > (z)D < (z'){ N > (z)N < (z')}t.ti]P (A6) 

where z = E + �89 t, z' -- E - • t. The destruction-of-correlation (destruction) 
s.operator is defined by 

P| O = P[ N> (z)D> (z) + N < ( z ' ) D < ( z  ') 

+ (N>(z)N<(z ' )} t . t iD>(z)D<(z ' )]  O (A7) 

The propagation-of-correlation s.operator is defined by 

Q ~e( I ) Q = OD > (z)D < (z')[1 + N > (z)D > (z) + N < (z')D < (z ') 

+ ( N > (z)N < (z') }t.ti D > (z)D < (z') ] O 

(AS) 
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In these definitions the renormalized propagator is defined by 
oo 

<alD(z)l fi) = D,~(z)8,,,B (a I E Ro(z)[ = a(~)Ro(Z)] I.>8.,B 
i = 0  

1 
= <alH 0 - z - a ( z )  1~>8",B 

and the self-energy part is defined by 

< o t ] G ( z ) [ ~ >  --'~ ea(z)Sa,fl"'~<(3l.l( ~ -- W[-Ro(z)U] i } [ol>Sa, fl 
i = 0  o,ti 

and 

<alN(z)l/3)---- N~,~ (z)(1 -- 8,,,B ) 

=<aI{~-V[-Ro(z)V] i} ]fl)(l-8~,,B ) 
i = 0  o.ti 

and 
(or; f l l( N > (z)N < (z') }t.tJy; 8) 

(A9) 

(A10) 

(All )  

i = 0  j = 0  t.ti 

• (1 - 8~,v)(1 - 8a,~ ) (A12) 

the subscript o.ti stands for "one-side topologically irreducible," 

where 
~(z)  = e [D>(z ) -  D<(~')]e 
~E(1) = P[ G> ( z ) -  G<(z ' ) ]p  

7(E(t) = ~ ) -- ~E(1) 

r ) = p ( N> (z)N<(z'))t.tiP 

(A14) 

(A15) 

(A16a) 

(A16b) 

(A17) 

Here 
which implies that the intermediate states should never be identical to the 
initial and final states, I a)  and I fl), while t.ti stands for "two-side topologi- 
cally irreducible," which implies that the intermediate states on opposite 
sides of the operator [7)(81 should never be identical to each other or to 
[a), [fl), IV), and 18). (23) 

The diagonal part in Eq. (A.5), i.e., P-P  component, is expressed by 

n ~ 0 (  x n + l  n p R > ( E + � 8 9 1 8 9  = 1 )  [Xe(/)] he(Z) 

o0 ~ n + l  n 
= Ae(l)n~=0( 1 ) [#E(/)] (AI3) 
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The kinetic s.operators X and )~ are called "collision s.operators." We 
distinguish the first terms of the collision s.operators, A~ and ~ as the 
"gain part" and the second term, ~, the "loss part." The loss part can be 
expressed in a similar form of the gain part: 

B 

= ~-~ (fl; fllAE(l)~ (m18) 
/3 

The collision s.operators satisfy the relation 

XE(I)Ae(I ) = Ae(I))~E(I ) (A19) 

In the decomposition (A5) with (A13), all singularities at l = 0 are seen 
explicitly. The elucidation of the singularities has previously been achieved 
with the aid of the diagrammatic technique in Ref. 14. To complete our 
comments we will here rederive Eq. (A13) by purely algebraic methods in 
Appendix B. 

The asymptotic time evolution s.operator, Y.e(t), is defined through the 
contribution of the poles at l = 0 of the analytically continued function of 
R > (E + �89 I)R < (E - �89 l) from the upper half-plane of l for t > 0. Assum- 
ing that the poles at l = + iO, which are seen explicitly in Eq. (A13), are 
isolated from the singularities of the analytically continued function of the 
kinetic s.operators into the lower half-plane, we obtain 

2 

Ee(t  ) = ( ~ / )  f r d l e - i # R > ( E  + � 8 9  �89 

1 ~ 1 
2~ri ~ -~. ( -  it + 0t)[P + QCE(I)P ] 

n = 0  

• ( [xe( l ) ]"Ae( l )or  Ae(1)[2e( l )]"}[P + P| (A20) 

where 0 l ---- O/O1 and the contour F b' encircles the poles at 1 = + i0 counter- 
clockwise excluding all other singularities in the continued plane. We 
assume the convergence of the left-hand side of (A.20). Then we can show 
that PEe(t)P obeys the following asymptotic master equations(14): 

i ~t P Y'e( t)P = 2~r fo~ dt' x'E( t')P ~e( t - t')P 

i ~ P~e( t )P  = 2qr (~~ PZE(t -- t')P~' E (t') 
dt Jo 

where 
2 

= ( =--- ~ ( dle XE(l'b ( t )  1 - 
2~ri ) Jr" ~ " 

1 ) 2  fr,,dle-i't~F.(l ) t) = ( 

(A21a) 

(A21b) 

(A22a) 

(A22b) 
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Introducing s.operators PFeP and PFEP as the solution of the follow- 
ing equations, 

1 n n PF~P = E ~ 3,xe(l)l,:+io(PFEe) (A23a) 
n=O 

1 ~ " "~ (A23b) eP~e  = 2 ~., ( e r i e )  a,x~(l)l,= +~o 
n = 0  

we can rewrite the equations (A21) into the following forms: 

i-~t PEE(t)P = er~e~(t)e (A24a) 

i ~t PXe(t)P = PXe(t)P'~EP (A24b) 

Furthermore, the full component of Ze(t  ) satisfies the relation 

EE(t) = [P + QC~P]Ee(t)[ P + PDEQ ] (A25) 

where QCeP and PDeQ are defined by 

1 n n QCEP = E ~. O, Qr ) (A26a) n=O 
PDeQ= E ~t (PI 'e  P )  ~ (A26b) 

n = 0  

APPENDIX B: DERIVATION OF EQ. (A13) 

Let us first consider a term in the perturbation series of PR > (z)R < (z) 
P which consists of k - m left fragments G > and m right fragments G <, 
i.e., 

1 G > k - m  1 1 G <  ( z ' )  H < -  z '  (,~;,~1 ~ (z) ~ )/o<_Z, 

=k~rn(m+. j](__)m+j+l(__Ge~)JG~m [ 1 ] 
+ ~ ( k - m +  i)( )k-m+i-~ 

i=0 k - m  
G,k-~G'~  [ 1 ] (B1) 

x( -_~ ,  ~.(-1)  ,o-z'-G" (,.-0 
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where we have used the abbreviations G,~ -- G,~(z), G~, =-- G,~(z'), and 

[ 1  L=( ~ ;+~ 
% - z - G~ e~ ---------z G• ( B 2 )  

and made use of the following identity: 

e 1 z e - z ' }  

, ,(m+,)('_L<'~ •  
= E ( -  ) z-~'j ( , - z j  j=o m 

m 
n _ _ ) n + i + l  

+i__~0 ( _ l > i ( n + i ) ( z  1 Z 

X ) n - - i + l  
e 1 z -----7 (B3) 

This identity is proved as follows: 

1 ] n + l ( _ _ )  m+l -- 1 0 )m 1 l 

I (~z)(~z' ) z~Iz'( 1 n!m! e z 
1) 

C Z t 

We first calculate the first term of Eq. (B4): 

n! m! ~ ~z ) ~ z -  z' E -  z 

1 1 ~m+l  1 
n' ( ~z )"( z -  z -----7 } e -  z 

~ ~,,n 1 fizz; •  ~ l ~o0 J~, ( z z , ,  ~ )  ' C - - Z  

(re+j)!  1..___L__~m+j+,( ),,-j+l 
= 2 ( - 1 ) J  t i m !  ( z - z ' }  \ c  1-~z j=0 

(B4) 

This is just the first term in Eq. (B3). The second term is obtained only by 
changing the variables z ~ z '  and n ~ m. Then the desired result is ob- 
tained. 

(BS) 
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We remark that the result (B8) can be obtained also by a simple 
calculation from the following equation ( 12): 

PR > (E + �89 < (E - l l ) e  = PD > (E + �89 < (E - �89 

+ PD > (E + �89 < (E - �89 

• ~2ffe(l)PR>(E + l l ) R < ( E  - �89 

(B9) 

However, the advantage of the above somewhat lengthy calculation is that 
its procedure has a direct correspondence with the diagrammatic technique 
introduced in Ref. 14. Therefore, we can construct the master equation step 
by step through the perturbation series which is resummed by a characteris- 
tic parameter of the system, such as the density, or the strength of the 
interaction. 

APPENDIX C: THE FACTORIZATION THEOREM 

In this Appendix we will prove the factorization theorem for the 
two-time reduced momentum distribution function which appears in the 
quantum kinetic equation under the operation of the collision s.operator: 

m 
(~(m)(p, . . . . .  Pm ; s , t )  = I'I dP(l)(pi ; s , t )  (C1) 

i=1 

Here the two-time distribution functions are defined in a similar way to the 
ordinary distribution function but replace the density matrix by the two- 
time dyad. That is, the N-particle Wigner distribution function and its 
reduced distribution functions are defined by 

FN({x,p}N;s, t )--  I ~ a e x p ( - - i ~ k i x i ) ( { p  
(27r) 3N pN \ i= 1 

f(m~((x,p}m;s,t ) -- N! ( (dx )W-m(  FN({x,p}N;s,t)  
(N :-m)! j jpN-~ , 

,r 0 = f(dx)Nfp,,_fN((X, 0 

k N k N ) 

(c2) 

(c3) 

(c4) 

and the "regular" Fourier coefficient of the Wigner function is defined by 

k pU-m; k Ok"~(P~IpN-m;s,t)=f~ N+~ p + ~  , P - - ~  ,pN--mps(t) 

(c5) 
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where pm ~ (Pl . . . . .  Pro}, ( x , P }  m ~ (X1 . . . . .  xm,Pl . . . . .  P m } ,  (P + 
(k/2)}" = (Pl + (kt/2) . . . . .  Pm -+ (kin/2)}, and ~pm =_ ~Pl  - . -  ~Pm, and 
the summation fp = f~- l~p becomes the integration on p in the thermody- 
namic limit (4.9). The integer v m is the number of independent nonzero 
relative momenta, k, of the off-diagonal component of the two-time 
dyad. (3) The coefficient having all k = 0 is just the two-time N-particle 
momentum distribution function, i.e., po(pN ; S, t) = eO ( N) (pN ; S, t). 

We further introduce the two-time spatial correlation functions 
g ( m ) ( 1 , . . . ,  m;s , t )=--g(m)( (x ,p)m;s , t )  for m /> s, which are defined by a 
similar decomposition to the well-known cluster expansion of the ordinary 
distribution functions. (5) First typical expansions are 

f~2)(1, 2) = f~')(1)f~l)(2) + g(2)(1, 2) (C6) 

f(3)(1, 2, 3) = f<')(1)f (')(2)f ~')(3) + f~ l)(1)g~2)(2, 3) 

+f(')(2)g~2)(3, 1) + f~ 1)(3)g(2)(1, 2) + g~3)(1, 2, 3) 

All above distribution functions are reduced to the ordinary distribution 
functions when s = 0. 

To prove the factorization theorem (C1), we impose the following two 
basic assumptions: (i) we consider the system in the thermodynamic limit, 
(4.9); (ii) at the initial time s = 0, t = 0, the spatial correlation between 
particles vanishes if the distance of two particles increases, i.e., 

g(m)(1 . . . . .  m) --> 0 when ]Xi  - -  xj[ --> oo for s = O, t = 0 

(C7) 

where i and j are any pair of particles in 1 , . . . ,  m. Under assumption (ii) 
together with the following assumption that the Fourier coefficient Ok r is not 
a pathological function on k at s = 0, t = 0, we can show that the Fourier 
coefficient is factorized by the reduced coefficient at s = 0, t - - 0  such 
that (24) 

N 

Pk'(prlpN--~)=P~[)(P')P~)(Pm) "" "O~"2(P ") I I  q,<1)(pi) (C8) 
i = r + l  

where l +  m + . - .  + n = r, and Y,~k i ~ O  and ~Tkj  = 0 . . . . .  E~k~ = O, 
and the reduced coefficient is defined by 

p~ky) (pm; S, t) ---- fpN_mPk,.(pm[pU--m; S, t) (C9) 

We now prove the factorization theorem. The proof will be performed 
through the following three steps: 

1. In the reduced generalized master equation to the one-particle 
function, we will express the m-particle momentum distribution function 
appearing in the right-hand side of the master equation, q,(m)~l . . . . .  Pro; 
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s', t'), in the form of the perturbation series. Then we will show that the 
perturbation series for ~(") consists of m disconnected components, each of 
which includes one of the particles in 1 . . . . .  m. Here we call components 
"disconnected" if the components in each term of the perturbation series 
are not connected through interactions. 

2. Next we show that this disconnected series of ~(m) can be expressed 
by the convolution integrable of m-disconnected components on variables 
E and l. 

3. Finally, by the Fourier-Laplace transform of this convolution 
integral, we obtain the product expression (C1) of the m-particle distribu- 
tion function. 

Let us introduce a terminology of "fixed particle" which designates the 
particle 1 of which momentum is not summed up when we reduce the 
master equation to the quantum kinetic equation (4.10); the remaining 
particles are called unfixed particles. In the thermodynamic limit, we can 
neglect a term in the perturbation series which includes a particle suffering 
a recollision after disappearing into the vacuum s.state la; a), through the 
interaction. (14) Therefore, in order to show the disconnected property of 
0 (m) in the reduced master equation, it is sufficient to show that in the 
collision s.operator in the master equation we can neglect the contribution 
from such terms that consist of only unfixed particles, or that consist of 
several disconnected components; the second type of this contribution 
appears when we consider the contribution of four or more particles 
scattering. 

The first part of this assertion is proved as follows. For the collision 
s.operator which consists of only unfixed particles, we have the following 
expression: 

2'  2 (o;  lx (t)113; 13)(13; 13t = 2  lA (l) E(l)113; 13)(13; 131 
B a L 

- I (Cl0) 

where the prime on the summation sign indicates that the summation is not 
taken for the momentum of the fixed particle. Using Eq. (A18) and 
interchanging the dummy variables a and 13 in the second term of Eq. 
(C10), we can see that (C10) vanishes because the collision s.operator does 
not include the fixed particle. Therefore, our statement for the disconnected 
property is proved if we neglect the contribution coming from more than 
three-body scattering in the collision s.operator. 

For the case of more general scattering, including four or more 
particles, the situation is more complicated, because the collision s.operator 
has a contribution from the term which consists of disconnected compo- 
nents, one of which includes the fixed particle and others consisting of only 
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unfixed particles. In order to prove the disconnected property for this 
general case, let us consider a particular contribution of the order 
( v > ) i ( v  <) J to po([pN; S', t') in the perturbed series 

po(lpN;s',t  ') = %ij(pN, Olp'iV, km;S' , t ' )Pkm(p'mlp 'N-m;o,o)  (Cl l )  

where the evolution superoperator %y is one particular term in the develop- 
ment of 

1 ~2 f f + ~  71,'-, - - i E s "  [~ 11 - - i l t %  " " - - - - |  I a l e  | a te  ( - 1 )  '+J 
2~ri J d - ~  Jr" 

• : 0 l [ ( n  > _ E -  � 8 9  > ] ' ( H  > -- E -  � 8 9  

• [(u0< - E + �89 E + �89 'u :k m) (C12) 

and we use the abbreviation [pU : k m) ~ [{P + 1-1rim nN-m.  2 - ,  ,,- , ( P - ~ k )  m, 
pN-m).  Using the convolution theorem on E and l, we can rewrite Eq. 
(C12), for i/> 1 or j />  1, in the form 

"srOG ! ~ , 

0( ipU;~ , , t , l=~EE[  a s (  at 
k "n  p , ,N  J -  ov ,,10 

X ~i_i,,j_j,(pN, O[pUN, k"n;s ' -  s",t'-- t")  

• tlk,,.(p"" I p"N--n; S", t") (C13) 

and 

~k,,~ . . . . .  ~ .... n -- %,'AP ,K Ip",km;~",t ") 
• pk~(p 'mlp 'U-m;o,o)  (C14) 

where ~i'4", is a well-defined term in the development of 

• (p.U : k.nl[ V > ( H o  > _ E -  1l)--1] i' 

•189  ) (C15)  

Let us assume that in some i' andj ' ,  %i-r . j - j '  in Eq. (C14) decomposes 
to some disconnected components. Then, by the same argument as in the 
previous paper (14) showing the conservation law of the probability in the 
perturbed solution, whole summations of this type of disconnected terms 
cancel each other due to the "compensative relation" when we take the 
summation of the momenta of unfixed particles. It implies that the collision 
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s.operator does not contain disconnected components, i.e., all particles are 
connected through their interaction. 

As a consequence of the above arguments regarding initial conditions, 
we conclude that the perturbation series for @(m) in the reduced master 
equation consists of m disconnected components, each of which includes 
one of the particles in 1 , . . . ,  m. 

As has been shown by Hugenholtz (25) in the perturbation expansion of 
(H - z)-1 in %, the summation of all possible terms obtained by ordering 
a set of disconnected components can be expressed in a simple form as a 
convolution integral of each component on z. For example, if r and 
,t,(z) are disconnected components, the inverse Laplace transform of the 
summation of all ordering of ~(z) and q'(z) is expressed by 

1 )2frdze-i2[t+(1/2),]fcd~dp( z _ ~),(~) (C16) 

where the path of integration c is a contour encircling all singular points of 
the integrand on the real axis in the positive direction, but not encircling 
the singular points located on the straight line through z parallel to the real 
axis. 

This theorem can be extended easily to the product of two resolvent 
R > (z)R < (z') which depends on two complex variables, z and z' (see Ref. 
14 for more details). 

The final part of our proof is, therefore, to show that the product of 
the convolution integrals on z and z' can be rewritten as the convolution 
form on l = z - z' and E = (z + z')/2.  It can be done only by changing 
variables as follows: 

( - ~ i  )4fFdze-i~[t+(1/2lsl~,dz'eiz'[t-(1/2)Slfcd~ fc,d~' F ( z -  ~ , z ' -  , ' )G(~,, ' )  

( l  /4( +00 --iEs [" , , - - i l t  [ ' + ~ 1 7 6  , ~ t  [" . . . .  F " [  = \ ~ ] . ) - ~ d E e  I ate l a,z I at e -e ' (  - l ')Ge'(l ') 
- -  d F "  d -  oo d 7" 

(C17) 

for t/> �89 [sl, where Fe(l) -- F(E  + �89 l, E - �89 and the path of I/" is parallel 
to the real axis on the upper half-plane of the complex l' plane and goes to 
- ~  from + ~ with the condition that Iml '  < Iml. Equation (C17) is just 
the Fourier-Laplace transform of the convolution integral. Thus, introduc- 
ing the inverse Fourier-Laplace transform of Fe(l  ) and Ge(l ) by 

1)2f_+oo~dEe-ieSfr,,dle-i"FE(l ) (C18) L( t )  = ( 

and so on, we obtain 

(C17) = f~(t) g,(t) (C19) 
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Combining all results obtained above, we conclude that the factoriza- 
tion property (C1) holds in the quantum kinetic equation. By putting s = 0 
in Eq. (C1), we also have the factorization theorem for the ordinary 
momentum distribution function which depends on only one time 
parameter. 

The above discussion was devoted to the system which consists of 
distinguishable particles. As shown previously ~ 14) we can treat the quantum 
statistical system in a very similar way to the distinguishable particle system 
by introducing the concept of "contraction" for the Fourier coefficient. 
Thus, the whole concept of connectedness and disconnectedness in the 
perturbation series also holds for the quantum statistical system, and we 
can expect the proof of the factorization theorem (C1) to hold in this case 
by a direct extension of the argument which we have given, although the 
discussion is more complicated. 
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